If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(P)=-0.4P^2+360P-(3P+4000)
We move all terms to the left:
(P)-(-0.4P^2+360P-(3P+4000))=0
We calculate terms in parentheses: -(-0.4P^2+360P-(3P+4000)), so:We get rid of parentheses
-0.4P^2+360P-(3P+4000)
We get rid of parentheses
-0.4P^2+360P-3P-4000
We add all the numbers together, and all the variables
-0.4P^2+357P-4000
Back to the equation:
-(-0.4P^2+357P-4000)
0.4P^2-357P+P+4000=0
We add all the numbers together, and all the variables
0.4P^2-356P+4000=0
a = 0.4; b = -356; c = +4000;
Δ = b2-4ac
Δ = -3562-4·0.4·4000
Δ = 120336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120336}=\sqrt{16*7521}=\sqrt{16}*\sqrt{7521}=4\sqrt{7521}$$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-356)-4\sqrt{7521}}{2*0.4}=\frac{356-4\sqrt{7521}}{0.8} $$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-356)+4\sqrt{7521}}{2*0.4}=\frac{356+4\sqrt{7521}}{0.8} $
| 2x=(6x+4) | | x=0.75(x-2)+5 | | B=3x+13° | | 12x^2-3x+4x=6 | | x=0.9x+12 | | 80=x/0.05 | | 3^2m÷3^7=243 | | (4x–3)=4x–78 | | y=2(2y-9) | | 6•10^t=360 | | 10^p=725 | | 10^3n=1,000,000 | | 10(n+1)=1 | | c+500=2.75 | | 4(x+1)^2-6=426 | | 2800=0.95x+140 | | x+x(.0725)=20 | | x=0.95x+140 | | x/2000=0.30 | | h=-5(0)²+8(0) | | 35^5x=60 | | r/8-23=(-7) | | Y=100x-5x2 | | 6+3y=8y-14. | | 3t+12=21 | | 18+4x÷10=18.4x | | (51-7x)x3=27 | | C=11+8=x | | 2^2x-1=10 | | (a)5 | | B(x)=40.75-0.07x | | (3x-11)/4-(3-5x)/8=(x+6)/2 |